The Use of Structures and Tools to Support the Work of Teacher Leaders: The Case of the El Paso MSP

August 2010

Neil Schiavo
Barbara Miller
Amy Busey

Education Development Center, Inc.

Prepared for the
Math and Science Partnership Knowledge Management and Dissemination Project
Horizon Research, Inc.
Education Development Center, Inc.
A Math and Science Partnership Research, Evaluation and Technical Assistance project
Funded by the National Science Foundation

Work on the Math and Science Partnership Knowledge Management and Dissemination Project is funded by the National Science Foundation (EHR- 0445398). These writings do not necessarily reflect the views of the National Science Foundation.
Rebecca Casillas¹, the MSP science staff developer in Milbridge Middle School, quietly entered the seventh-grade classroom of teacher John Sanford and took a seat in the back. As the staff developer at this school, Casillas provided support to science teachers through observing lessons and offering feedback, conducting demonstration lessons, or developing lesson plans with teachers. From the back of Sanford’s classroom, Casillas observed the lesson using an observation protocol, called the Teaching and Learning Protocol (TLP), that she had been trained to use through the El Paso MSP. With the TLP, Casillas had a way to assess student discourse and the cognitive demand of the lesson taught by Sanford. Casillas planned later to use another MSP instructional coaching tool, the Professional Teaching Model, to guide reflection with Sanford on the lesson that he had taught and identify teaching strategies that he could utilize in subsequent lessons in the unit.

Like all staff developers, Casillas determined which instructional coaching tools she used in her work with teachers to help them improve their classroom teaching. Casillas knew that, although this was her first time in Sanford’s classroom, she needed to effectively use the time she had with him. Casillas believed that the tools she had selected for today would allow her to have a substantive discussion with Sanford about his teaching, by focusing their conversation on specific instructional issues.

Introduction

The El Paso Math and Science Partnership was launched in 2002 with funding from the National Science Foundation. The project was comprised of the El Paso Collaborative for Academic Excellence (EPCAE), a partnership among the following: the University of Texas-El Paso, the El Paso Community College, the Education Service Center- Region 19, and a collection of twelve urban and rural independent school districts in the El Paso region. The leadership of the El Paso MSP included education experts from the EPCAE, faculty members from the university partners, and district administrators from the school districts. The Principal Investigator of the El Paso MSP was Susana Navarro, Executive Director of the EPCAE.

The El Paso MSP engaged in a systemic approach to improving student achievement in K-16 mathematics and science in the El Paso area. A significant component of the El Paso MSP was the preparation and deployment of MSP staff developers, a cadre of MSP-funded teacher leaders in mathematics and science. The staff developers provided on-site professional development, leading workshops and providing in-classroom support to mathematics and science teachers in middle and high schools. The staff developers were intended to improve instruction in mathematics and science in the schools in which they worked as part of the El Paso MSP’s comprehensive school reform effort². The

¹ Pseudonyms are used in all vignettes, which are based on accounts of project leaders and participating teachers.
² The El Paso MSP was a large project that included additional project goals and programs beyond those that involved the staff developers and which are not examined in this case of teacher leadership. Additional goals included: increasing the number of teachers highly qualified to teach mathematics and science,
leadership of the El Paso MSP applied lessons learned through earlier teacher leader programs to build structures and tools to support the staff developers. Central to the work of the staff developers were instructional coaching tools that focused the staff developers’ interactions with classroom teachers on high-quality instruction in mathematics and science.

This case focuses on the strategies of the leadership of the El Paso MSP to utilize tools and structures to support the staff developers in their work to improve teacher pedagogical knowledge and classroom instruction. The case begins with an overview of the school districts and organizations in the El Paso MSP partnership, followed by the context for mathematics and science teacher leadership in the El Paso region and a description of the strategies of the El Paso MSP to achieve its goals for the staff developers. These sections provide background for discussion of key issues, identified by the project leaders, which shaped the use of tools and structures to support the staff developers. The case concludes with a discussion of the sustainability of the staff developer program implemented through the El Paso MSP.

Description of the El Paso Math and Science Partnership

Members from each of the partnering organizations were involved in the El Paso MSP staff developer program. Among the partnership, the EPCAE took on the greatest role in coordinating, managing, and directing the El Paso MSP. The staff of the EPCAE collaborated with staff from school districts to select teachers for staff developer positions and support their work in the school districts. Leadership of the EPCAE met regularly with superintendents and other district representatives to ensure fidelity of program implementation and assess progress towards the partnership’s goals. Staff of the EPCAE and the school districts were joined by faculty members from the University of Texas-El Paso and the El Paso Community College in designing and leading professional development for the staff developers in mathematics and science.

The twelve participating independent school districts (ISDs) enrolled a total of over 170,000 students. The districts ranged in size from under 1,000 students to over 65,000. In the urban districts of El Paso ISD, Ysleta ISD and Socorro ISD, schools were very large, with student enrollment at the middle and high schools typically over 1,000 and often much higher. While the size of the districts varied greatly between the nine rural and three urban school districts, the demographics of the student population were similar. Across the twelve districts, 89% of the student population was Hispanic and 64% from low-income families. In each of the three urban districts, staff from the EPCAE worked closely with the MSP district director, a staff member of the district central office, to design and provide ongoing trainings to staff developers. To provide these activities in the rural districts, EPCAE staff worked with staff of the Education Service Center-Region 19.

In the El Paso MSP there were 29 staff developer positions across the twelve districts. At the beginning of the grant, the staff developers were based in high schools. At the end of the third year of the grant, the staff developers ended their activities in the high schools and transitioned into middle schools, where project leaders saw a greater need for their efforts. In the three urban districts, each school was assigned a half-time science and a half-time mathematics staff developer, accounting for 25 of the staff developers in the MSP. Staff developers were each assigned to two schools in their districts. Additional staff developers were assigned to schools in the rural districts, with each of these staff developers working across multiple schools and districts. This case focuses on the sustainability of the staff developer program in the three urban districts where the majority of staff developers were employed.

District leaders and staff of the EPCAE collaborated to create a job description for the staff developers which emphasized disciplinary knowledge in mathematics or science. Applicants were expected to have a minimum of three years teaching experience and a degree in mathematics or science. In addition, project leaders looked for experience leading professional development for classroom teachers in mathematics or science. District leaders and EPCAE staff worked together to conduct the search to fill staff developer positions, including interviews with candidates to assess if they held sufficient awareness of national standards and school reform in their content area and the belief that all students could meet standards.

During the El Paso MSP, staff developer positions were paid by their districts through sub-contracts with the EPCAE that drew from MSP funding. To participate in the partnership, the three urban districts were required to create a new district administrator position, entitled the MSP district director, to oversee the work of the staff developers. This position was also supported by MSP funds through the EPCAE sub-contracts with the districts.

Context for Mathematics and Science Teacher Leadership in El Paso

The EPCAE had led school reform projects in school systems in the El Paso area since 1991. Beginning in 1994, the EPCAE had received funding through various NSF initiatives leading up to the five-year MSP grant awarded in 2002. The earlier NSF-funded projects had involved many of the same EPCAE staff members and school districts who participated in the El Paso MSP. Teacher leadership positions were a feature of these earlier initiatives, although the model of teacher leadership evolved over time.

While the earlier models of teacher leadership had been viewed as generally successful, project leaders were aware of three main obstacles that had limited the impact of teacher leaders and they worked to remedy these issues in the El Paso MSP program. First, teacher leaders were challenged to provide high-quality professional development to classroom teachers when the teacher leaders lacked the content knowledge and resources...
that would enable them to provide in-depth analysis and feedback on instruction. Second, the impact of teacher leaders was limited when they were only able to work with those teachers who volunteered to work with the teacher leaders. And third, teacher leaders could not be held sufficiently accountable for their performance because the work of one teacher leader varied from the next and because teacher leaders lacked clarity on the expected outcomes of their work with classroom teachers.

In the El Paso MSP, the ultimate goal for the work of staff developers was reducing the achievement gap between Hispanic and white students in the area. At the launch of the EPCAE, significant disparities between these groups were identified through analysis of data on student performance and course enrollment and completion. The projects preceding the MSP grant had helped to narrow this gap, but notable disparities still remained in 2002. These were particularly acute in middle and high school mathematics and science, where Hispanic students were much less likely than white students to demonstrate proficiency on the state-wide Texas Assessment of Academic Skills (TAAS). The staff developers provided support to middle and high school teachers to improve mathematics and science instruction and to eliminate these disparities.

MSP Strategies

Three primary strategies were employed to support the staff developers towards accomplishing the goals of the El Paso MSP: (1) design a set of instructional coaching tools that staff developers would use to support their work with classroom teachers; (2) create MSP district director positions in participating urban districts to oversee the work of the staff developers; and (3) develop and provide ongoing training for staff developers.

Instructional coaching tools

A primary strategy within the MSP staff developer program was the use of a set of coaching tools that focused the staff developers’ interactions with teachers squarely on specific, crucial instructional issues. The tools were designed through collaboration among the partners in the MSP and provided staff developers with a variety of ways to analyze and assess the cognitive demand of classroom lessons in relation to state and national standards. The need for the tools emerged from the experience of EPCAE staff in earlier initiatives, where it was observed that, in the absence of a clear strategy for building a professional relationship focused on instruction, teacher leaders relied upon their personal relationships with teachers to provide feedback on classroom teaching. These personal relationships did not always offer a strong platform for teacher leaders’ efforts to impact teachers’ instruction. The instructional coaching tools organized the interactions between the staff developers and teachers to focus on instruction.

One project leader, who was a co-developer of some of the staff developer tools, described the tools as central to the staff developer coaching model because the tools “communicated an emphasis on instruction.” She explained:
The tools were the neutral ground of the staff developer work, giving them something tangible to hold on to. The relationship [between staff developer and teacher] is built around the teaching and learning of math and science, not built around interpersonal relationships first and then turning to a focus on math/science later.

Staff developers had the discretion to use, or not use, the instructional coaching tools as they wished. The most popular tool among the staff developers was the Professional Teaching Model (PTM). The PTM provided a process for aligning a planned lesson with state and national standards. In using the PTM, staff developers worked with teachers to set a measurable goal for a lesson, develop an assessment towards that goal, observe the lesson, and analyze the results of the assessment. Staff developers could employ all the steps of the PTM or only selected steps, depending on available time with and the needs of the teacher.

Staff developers also frequently used the Teaching and Learning Protocol (TLP). The TLP was a classroom observation protocol that highlighted key aspects of high-quality mathematics and science classroom instruction, such as analysis of student discourse and the cognitive demand of assigned tasks in the observed lesson. After using the TLP to focus their observations, staff developers discussed their observations with classroom teachers as a way to reflect upon their classroom teaching and to identify strategies for improvement.

Another tool used by the staff developers was the Mathematics and Science Curriculum Frameworks. The Frameworks were an outline of key mathematics and science concepts mapped to cognitive demand levels and aligned to state and national standards. The Frameworks provided staff developers with a recommended sequence for teaching the content of curriculum.

Staff developers also utilized the Pedagogical Content Knowledge (PCK) tools, which were a series of research-based reports focused on specific mathematics and science concepts. The PCK tools articulated instructional strategies that addressed the most common student and teacher misconceptions related to those concepts.

These four instructional coaching tools had some common features. The tools were designed as discrete instruments that staff developers could share with classroom teachers. The tools were designed to focus the work of the staff developers on promoting teacher pedagogical content knowledge and improving teachers’ classroom practice. As a set, the tools offered multiple points of entry into the classroom by the staff developers, so that staff developers had access to various strategies in their work with teachers.

Project leaders noted it was important for staff developers to have flexibility in their work with teachers. The choice of tools to use was influenced by the teacher’s capabilities, the particular goals the staff developer had for that teacher, and the lesson being taught. For example, one former staff developer explained that she used the PTM when she worked with a teacher for the first time. She found that one step of the PTM, titled “Reflection,” was a good starting point for eliciting teachers’ thoughts on a recently conducted
classroom lesson and helped the teacher become comfortable in discussing their instructional practice with the staff developer. Another staff developer noted that while she thought the PTM was an excellent tool in general, she did not feel compelled to adhere precisely to all of the steps of the process. She used the PTM to remind herself of the goals she had in her interactions with teachers and tended to refer to it directly only when working with teams of teachers.

MSP district director

The MSP district director position was created in each of the three urban districts in the partnership as a district employee funded through a sub-contract with the EPCAE. Language within the sub-contract stipulated that districts must employ a full-time MSP district director to oversee the work of staff developers in schools and support the goals of the El Paso MSP. The district director evaluated the performance of the staff developers and participated in designing and leading their ongoing training along with staff from the EPCAE. In the three urban districts, the district director position was filled by a candidate from within the district.

Project leaders noted that the strategy of creating the MSP district director position emerged out of challenges that had arisen in previous projects, which underscored the importance of having a district staff member who was accountable for the goals of the project. In earlier projects that partnered districts with the EPCAE, district administrators served as liaisons to the EPCAE as an additional responsibility to their existing jobs. This situation invariably led to tension since, when these administrators worked to balance the demands of the partnership with the demands of their districts, the district demands had priority.

The MSP district director position was built into the district infrastructure as a new role which aligned the interests of the districts with those of the El Paso MSP. The district director reported to the district superintendent and to the director of the EPCAE and thus had responsibilities to the district and to the El Paso MSP. The district director was charged with ensuring that the staff developers performed their duties as outlined by the El Paso MSP and, as their supervisor, monitored and supported their work in the districts. Staff developers reported to their district director, not to school principals or other district administrators. The district director also met with school principals to establish the purpose of the staff developers and prevent additional responsibilities from being assigned to the staff developers.

Project leaders reported that the district directors, at times, saw their role as protecting the staff developers from other influences but, largely, the district directors were viewed as part of the district office and “were not seen as interlopers.” Through their contact with the staff developers and EPCAE and district staff, the district directors established and reinforced a consistent message of the expectations for the staff developers.

Ongoing training for staff developers
The training of the MSP staff developers occurred before and during their assignment to schools. After being hired in the spring of 2003, staff developers received 100 hours of professional development during that summer, focused on instructional coaching skills that would help them to work productively with teachers and administrators in their schools. The professional development addressed implementation of mathematics and science curriculum, cognitive coaching strategies, and analysis of student achievement data. Staff developers from all the MSP partner districts participated together in the 100 hours of professional development. Project leaders reported that this shared experience was important, so that staff developers could speak the same language when they later came together for future MSP trainings.

After the initial training, additional MSP training for the staff developers was delivered “on-the-job” through meetings held twice each month. It was through these meetings that staff developers were taught to use the instructional coaching tools that were created during the project. Meetings were designed and led by EPCAE staff and the MSP district directors with some involvement of faculty from the University of Texas- El Paso and the El Paso Community College. Each meeting was organized around an “Action Agenda” with objectives that translated to specific tasks for which staff developers would be held accountable. Staff developers reported on their implementation of these Action Agenda tasks at the next meeting. The tasks reflected the cycle of the school year: agenda tasks at the beginning of the school year were “Become familiar with math/science teacher schedules and open periods” and “Meet with principal and other instructional leaders regarding the specific work of the staff developer.” Later in the year, Action Agenda tasks included “Complete two or more PTM cycles [the use of the Professional Teaching Model] with a minimum of three to four participants in each cycle.”

Over the five years of the MSP, training sessions gave increased attention to deepening staff developers’ pedagogical content knowledge of mathematics or science. At the outset of the MSP, project leaders had emphasized the importance of content expertise among staff developers through the criteria outlined in a job description, which became part of the selection criteria. Selecting candidates with deep content knowledge allowed the initial and on-going training of the staff developers to focus on developing instructional coaching skills and on issues that emerged during their work in schools. Based on an assessment of the work of the staff developers, in the third year of the MSP project leaders determined that trainings should include a greater focus on pedagogical content knowledge in recognition of the importance of such expertise for staff developers and teachers. This decision was based on observations of the staff developers at work in their schools, which underscored project leaders’ belief that that pedagogical content expertise was vitally important to their work and needed additional attention through training.

Key Issues that Shaped the Design and Implementation of the Staff Developer Program in the El Paso MSP
Project leaders of the El Paso MSP identified key issues that shaped the design and implementation of the staff developer program. These issues reflected conditions that influenced the program’s structure and focus, as well as decisions made by project leaders that contributed to the program’s success. Discussion of each of these issues highlights strategic thinking as well as reflections in hindsight by project leaders, and offers insights for other designers of teacher leader programs.

- The MSP district director aligned the work of the staff developers with the goals of the MSP as well as the goals of their districts.
- Hiring staff developers with mathematics or science content expertise facilitated their immediate work with teachers in schools and classrooms.
- The instructional coaching tools provided consistency, specificity, and direction to the work of the staff developers.
- Instructional coaching tools communicated to district and school administrators clear expectations for the work of the staff developers.

The MSP district director position aligned the work of the staff developers with the goals of the MSP as well as the goals of their districts.

Project leaders from the EPCAE reported that the importance of a position such as the MSP district director emerged from the lessons of earlier teacher leadership initiatives. The effectiveness of instructional coaching positions in these earlier projects had been limited because the roles of the coaches shifted in response to the changing priorities of the districts. The MSP district director, with responsibilities to the El Paso MSP and the district, was designed to prevent such shifts and ensure that the goals of the partnership as well as those of the district remained as a focus for the work of the staff developers.

One project leader stated that “turnover of the superintendent position was one of the major challenges of the El Paso MSP work” because of the potential threat that the new administration would not support the MSP goals for the staff developers. When superintendents and principals were replaced, the district director communicated with new administrators directly to re-align the goals of the El Paso MSP with new directions envisioned by the new leaders. In these discussions, the district director made sure that the essential aspects of the staff developers’ work, such as working directly with teachers as opposed to students, would remain in place. These discussions garnered continued support for the MSP staff developer program from the new administration.

Project leaders acknowledged that the willingness of districts to create the new MSP district director was a product of several factors that may not be present for all school reform projects outside of El Paso. The El Paso MSP had the advantage of longstanding relationships between several of the school districts and the EPCAE, which had partnered together in earlier NSF grants. The ability to provide funding for the MSP district director positions through sub-contracts from the MSP grant was a significant aid in securing the position. Without this existing groundwork and resources, project leaders noted that district administrators could have been uncomfortable with a new district
position that was so closely associated with an external partner, such as the EPCAE, to oversee the staff developers.

Project leaders reported that key to the district directors’ success was developing relationships with district administrators in the early phases of the MSP project. The importance of these relationships was highlighted in one district where the superintendent was replaced shortly after the El Paso MSP began and before the district director had been able to establish relationships within the district. In this situation, it was an uphill battle for the district director to build an ongoing commitment for the staff developers, and El Paso MSP leaders felt that the staff developers never received the same level of support in this district as in the others. Later in the MSP, when changes in school and district administrator positions occurred during the course of the El Paso MSP in other districts, the district directors utilized strong networks of support that had been constructed across the district, thus maintaining a commitment to the staff developer program.

Hiring staff developers with mathematics or science content expertise facilitated their immediate work with teachers in schools and classrooms.

Project leaders reported that it was important to hire teachers with content expertise to fill the staff developer positions. Project leaders noted that hiring candidates who demonstrated expertise within their content area (e.g., a bachelor’s or master’s degree in mathematics or science) reduced the amount of time and project resources that were needed to prepare staff developers for their roles. After they were hired, staff developers received 100 hours of professional development during the summer before they were placed in schools the following fall. As the staff developers were viewed as already having a deep knowledge of mathematics or science, the focus of the 100 hours of professional development was on mastering strategies for coaching teachers to improve classroom instruction, rather than on developing staff developers’ disciplinary content knowledge.

The importance of hiring teachers with content expertise reflected lessons learned from earlier EPCAE initiatives. In these earlier programs, it became apparent to staff at the EPCAE that coaches needed to have a deep and thorough understanding of the disciplinary content they would work within. In its absence, conversations between the coaches and classroom teachers remained at a superficial level that limited the impact on a teacher’s instruction. Content expertise was particularly important for staff developers in the El Paso MSP, because they would be working in middle and high schools where the mathematics and science content was more complex than in elementary grades.

Of the staff developers who were hired at the beginning of the project, all of the science staff developers held a degree in their field, while nearly all the mathematics staff developers held either a degree or had minored in mathematics. Many of these initial hires remained in the positions throughout the five years of the MSP grant and project leaders indicated that they were satisfied with the quality of the candidates who were hired. While the selection process accounted for staff developers having the content expertise desired by project leaders, the El Paso MSP also delivered ongoing training to
the staff developers to address areas where additional preparation was needed. These trainings focused on deepening staff developers’ understanding of pedagogical content knowledge, which was critical for their work to transform teachers’ classroom instruction.

The instructional coaching tools provided consistency, specificity, and direction to the work of the staff developers.

Project leaders explained that work in earlier projects revealed the importance of holding teacher leaders accountable for how their time was used: they had found that, without explicit direction, they could not assume that all teacher leaders would push to create the desired impact on classroom instruction. In order to accomplish this, teacher leaders needed to know what was expected of them. The El Paso MSP instructional coaching tools helped clarify expectations and ensure consistency in the work of the staff developers across sites by creating a shared vision for quality classroom instruction.

Project leaders noted that the tools communicated to the staff developers an image of the specific changes in teacher’s instructional practice that they were trying to effect. One project leader stated that the Teaching and Learning Protocol (TLP) was particularly important in helping staff developers understand the goals for their work, because it provided an image of the instructional goals of the El Paso MSP. The TLP was an observation protocol that provided an image of high-quality instruction in mathematics and science. The TLP also had a secondary use within the El Paso MSP to review the work of the individual staff developers and to assess the effectiveness of the program across school districts. As part of the El Paso MSP, twice per year principals, district administrators and district directors conducted observations using the TLP in classrooms where the staff developers had been active and provided feedback to the staff developers based on the results. The observations became the basis of ensuing discussions among district and EPCAE leaders of evidence of changes in teacher practice that could be connected to the influence of the staff developers. Staff developers received feedback based on these observations as part of their twice-monthly meetings with EPCAE staff and the MSP district directors. A project leader noted that because the analysis of the work of the staff developer was based on a tool that they used, it allowed the staff developers to have an understanding of the process and criteria that school administrators and the district director were using.

The collection of TLP observations across all staff developers was used by project leaders to inform programmatic decisions to support the staff developers. Project leaders reported one important example of the use of TLP observations was to make adjustments to the staff developer program. In the third year of the project, data collected in the observations indicated that staff developers would benefit from additional preparation in identifying and addressing common student and teacher misconceptions in mathematics and science. The result was a decision by project leaders to produce a new set of tools in the fourth year of the MSP, the Pedagogical Content Knowledge (PCK) Tools, a series of research-based reports focused on specific mathematics or science concepts, along with a program to prepare staff developers in its use with teachers.
Instructional coaching tools communicated to district and school administrators clear expectations for the work of the staff developers.

Project leaders reported that the instructional coaching tools were effective in establishing a shared vision for the staff developers among the partnering districts and the EPCAE. This shared vision for staff developer work was also expressed in the job description that was designed collaboratively by staff from the EPCAE and district representatives. However, experience in earlier teacher leadership initiatives demonstrated that the staff developer positions could be changed by school administrators to address immediate and short-term needs when crises emerged during the course of the school year. Thus, while the job description outlined the intended role of the staff developers, the instructional coaching tools provided a way to communicate a shared understanding among the partnership of the ongoing, day-to-day work of the staff developers.

The instructional coaching tools provided structure to the work of the staff developers, illustrating the expectation that staff developers would work directly with teachers and that the focus of their work would be to influence the quality of instruction. A former MSP district director noted that, occasionally, principals or district administrators assigned responsibilities that would limit staff developers’ time to work directly with teachers. In these instances, the district director found that she was able to use the instructional coaching tools to show these administrators the work that staff developers were intended to do. This district director described the instructional coaching tools as illustrative of the vision for the staff developers that assured that the work that was outlined in the MSP grant was carried out in the schools.

The Sustainability of the El Paso MSP Staff Developer Program

Following the completion of MSP funding in 2008, several aspects of the staff developer program were assimilated into the districts where the staff developers had worked. Project leaders reported that some of the partnering school districts continued to support coaching positions that resembled the staff developers, in part by continuing to utilize the instructional coaching tools. In addition, districts adopted variations of the MSP district director position to continue oversight of district coaching positions.

This section of the case is a discussion of the sustainability of the El Paso MSP staff developer program. Sustainability is viewed through the lens of strategies used by the El Paso MSP leadership team that contributed to the continuation and growth in the staff developer program beyond the original NSF funding. This discussion expands on the MSP strategies and key issues identified by the leadership team as influential in the design and implementation of the staff developer program.

Decisions that contributed to sustainability were identified through the use of a theoretical framework from the Handbook for Enhancing Strategic Leadership in the Math and Science Partnership (Weiss, Miller, Heck & Crest, 2004). In the framework,
four components were identified as critical to enacting and sustaining change through school reform efforts: 1) designing and implementing interventions, 2) garnering support from key stakeholders, 3) aligning policy and 4) developing capacity and infrastructure to scale up interventions.

Strategies that contributed to the sustained impact of the El Paso MSP staff developer program were:

- The consistent use of the El Paso MSP instructional coaching tools shaped the work of district coaches after the MSP.
- The successful integration of the MSP district director position into the district infrastructure contributed to the continuation of the position after MSP funding.

The consistent use of the El Paso MSP instructional coaching tools shaped the work of district coaches after the MSP.

In creating the set of instructional coaching tools, the leaders of the El Paso MSP created products that were later adopted by coaching positions in the partnering districts following the MSP. The continued presence of the tools as portable, tangible products helped ensure that these coaching positions retained what was an essential quality of the MSP staff developer program: a focus on fostering instruction with high cognitive demands on all students.

Two of the urban districts in the partnership hired all of their staff developers into coaching positions after the completion of the project. Additional district coaching positions were filled by teachers who had not served as staff developers. MSP project leaders reported that the instructional coaching tools were a central part of the work of all of the coaches in these two districts, including those coaches who had not been staff developers.

This vignette describes the work of a former staff developer who had been hired into the newly created coaching position of mathematics specialist in her district. The ongoing use of the instructional coaching tools in the new role ensured that the work of the mathematics specialist continued the focus on designing and teaching high-quality lessons that had been established in the El Paso MSP. However, the role of mathematics specialist included additional responsibilities beyond working directly with classroom teachers, which required that the former staff developer adjust how she used the tools. As a result, she did not employ the tools with the same level of fidelity as a mathematics specialist as she had as a staff developer during the El Paso MSP.

Janet Williams entered the classroom of Ms. Contreras as the students were beginning their work on a “Bell Ringer” exercise. Williams was a former El Paso MSP mathematics staff developer who, at the end of the MSP project, had been hired by her district into the role of mathematics specialist. Williams quietly walked around the room, asking students how they would approach the Bell Ringer problem that Contreras had written on the board, a math question taken from a previous state standardized exam.
As the class began a new activity on mathematical expressions, Williams moved to the back of the room to observe the class. Williams used the Professional Teaching Model (PTM), on which she had been trained as a staff developer, to structure the feedback she would provide Contreras. In her role as district mathematics specialist, Williams focused on the “reflection” part of the PTM and spent less time working with teachers on the other parts of the PTM process. This focus reduced the amount of time that Williams spent working with each teacher, which was important because as a mathematics specialist, she had assumed additional responsibilities beyond what she had done in the MSP. In MSP, Williams had spent the majority of her time in classrooms and with teachers. Now, as a mathematics specialist, Williams split her time between working in teachers’ classrooms and performing other duties, such as planning professional development for teachers or analyzing school achievement data.

Although the new responsibilities limited her time in classrooms, Williams had also found that her position in the district came with some benefits that might improve her ability to impact classroom instruction. For example, she believed that now that she was clearly affiliated with the district, teachers were more responsive to her feedback. While Williams had found that her responsibilities as a mathematics specialist differed in some ways from her role as a staff developer, she was encouraged that the focus on supporting teachers to achieve high quality instruction remained.

The design of the instructional coaching tools as discrete products contributed to their continued use after the MSP, since they could be easily shared and distributed within the districts. In addition, each of the instructional coaching tools developed during MSP had been designed as a stand-alone product. New users of the instructional coaching tools benefited from access to training based on the training that had been developed through the El Paso MSP to support the staff developers’ use of the tools. This training assisted teacher leaders in recognizing the level of cognitive demands in lessons. New users of the tools had access to this training from former staff developers who were hired into district positions and led trainings in the use of the tools in their districts. Further, the EPCAE continued to offer coaching institutes and support to districts through ongoing initiatives based on the trainings developed for the staff developers, which were attended by staff from districts that participated in the El Paso MSP.

The successful integration of the MSP district director position into the district infrastructure contributed to the continuation of the position after MSP funding.

The creation of the MSP district director position was an effective strategy for supporting the work of the staff developers during the MSP grant. After the completion of MSP funding, two of the three urban districts elected to continue district-based positions similar to the role of the district director, in addition to continuing coaching positions based on the staff developers.

Contributing to the success in sustaining the district director role were actions by the project leaders, from the outset of the project, to integrate the district director into the overall organization of the district. Project leaders built district ownership of the
positions by placing the district directors within central office as district employees. At the completion of the El Paso MSP, two districts modeled the oversight of their coaches on the role of the district directors during the partnership.

During the El Paso MSP, the presence of the district directors as a district-based supervisor of the staff developers was integral in ensuring that the work of the staff developers was consistent with the goals of the district and the El Paso MSP. In two districts, this concept from the El Paso MSP about the nature of the support needed by instructional coaches continued to be present. In one district, a newly-created district leadership position closely mirrored the district director in that the individual oversaw the work of the district coaches. This position was filled by the former MSP district director. In a second district, the former MSP district director was placed in the pre-existing position of director of mathematics and science and was then given oversight of the district’s mathematics and science facilitators (the reconfigured staff developer positions in this district).

Conclusion

The El Paso MSP presented a model of teacher leadership that focused predominantly on supporting teacher leaders as they conducted their work in schools. The twenty-nine staff developers received 100 hours of training in coaching skills the summer before they were placed in schools. However, the majority of the project resources were invested in training that occurred while on-the-job and to support the staff developers in their roles. This model of teacher leadership differed from programs that focus on delivering extensive training to future teacher leaders and then relying on the participants to shape their work to match their training. Alternatively, the work of the staff developers was shaped through supports from the El Paso MSP. The use of a common set of instructional coaching tools and ongoing support from MSP district directors and other project leaders established a shared vision for impacting instruction. This strategic use of tools and structure contributed to the sustainability of the staff developer program after the end of the El Paso MSP.

References